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Linear Models: 
Permutation Methods 

Permutation tests (see Permutation Based Infer­
ence) for the linear model have applications in 
behavioral studies when traditional parametric 
assumptions about the error term in a linear model 
are not tenable. Improved validity of Type I error 
rates can be achieved with properly constructed per­
mutation tests. Perhaps more importantly, increased 
statistical power, improved robustness to effects of 
outliers, and detection of alternative distributional 
differences can be achieved by coupling permutation 
inference with alternative linear model estimators. 
For example, it is well-known that estimates of the 
mean in the linear model are extremely sensitive to 
even a single outlying value of the dependent vari­
able compared to estimates of the median [7, 19]. 
Traditionally, linear modeling focused on estimat­
ing changes in the center of distributions (means or 
medians). However, quantile regression allows distri­
butional changes to be estimated in all or any selected 
part of a distribution or responses, providing a more 
complete statistical picture that has relevance to many 
biological questions [6]. 

Parameters from the linear model in either its 
location, y = Xβ + ε, or location scale, y = Xβ + 
�ε, form can be tested with permutation argu­
ments. Here, y is an n × 1 vector of dependent 
responses, β is a p × 1 vector of unknown regres­
sion parameters, X is an n × p matrix of pre­
dictors (with commonly the first column consist­
ing of 1’s for an intercept term), � is a diago­
nal n × n matrix where the n diagonal elements 
are the n corresponding ordered elements of the 
n × 1 vector Xγ (diag(Xγ )), γ is a p × 1 vector 
of unknown scale parameters, and ε is an n × 1 
vector of random errors that are independent and 
identically distributed (iid) with density fε, dis-

F −1tribution Fε, and quantile functions. Various ε 
parametric regression models are possible, depend­
ing on which parameter of the error distribution 
is restricted to equal zero; for example, setting 
the expected value Fε(µ|X) = 0 yields the familiar 
mean regression, setting any quantile F −1(τ |X) = 0ε 
yields quantile (0 ≤ τ ≤ 1) regression, and the spe­
cial case of Fε 

−1(0.5|X) = 0 yields median (least 
absolute deviation) regression [14]. The location 

model with homoscedastic error variance is just a 
special case of the linear-location scale model when 
γ = (1, 0, . . .  ,  0)′ . 

Estimates (β̂) of the various parametric linear 
models are obtained by minimizing appropriate loss 
functions of the residuals, y − Xβ̂. Minimizing the 
sum of squared residuals yields the least squares 
estimates of the mean model. Minimizing the sum of 
asymmetrically weighted (τ for + residuals and 1 − 
τ for − and 0 residuals) absolute values of the resid­
uals yields the quantile regression estimates, where 
least absolute deviation regression for the median 
(τ = 0.5) model being just a special case [15]. 
Consistent estimates with reduced sampling varia­
tion can be obtained for linear location-scale models 
by implementing weighted versions of the estima­
tors, where weights are the reciprocal of the scale 
parameters, W = �−1. In applications, the p × 1 
vector of scale parameters γ would usually have 
to be estimated. Weighted regression estimates are 
obtained by multiplying y and X by W and mini­
mizing the appropriate function of the residuals as 
before. Examples of various estimates are shown in 
Figure 1. 

Test Statistic 

A drop in dispersion, F -ratio-like, test statistic that 
is capable of testing hypotheses for individual or 
multiple coefficients can be evaluated by similar 
permutation arguments for any of the linear model 
estimators above [2, 5, 7, 19]. This pivotal test statis­
tic takes the form T = (Sreduced ÷ Sfull) − 1, where 
Sreduced is the sum minimized by the chosen esti­
mator for the reduced parameter model specified by 
the null hypothesis (H0 : β2 = ξ ) and Sfull is the 
sum minimized for the full parameter model speci­
fied by the alternative hypothesis. This is equivalent 
to the usual F -ratio statistic for least squares regres­
sion but the degrees of freedom for reduced and full 
parameter models are deleted because they are not 
needed as they are invariant under the permutation 
arguments to follow. The reduced parameter model 
y − X2ξ = X1β1 + ε is constructed by partitioning 
X = (X1, X2), where  X1 is n × (p − q) and X2 is 
n × q; and by partitioning β = (β1, β2) where β1 is a 
(p − q) × 1 vector of unknown nuisance parameters 
under the null and β2 is the q × 1 vector of param­
eters specified by the null hypothesis H0 : β2 = ξ 
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Figure 1 Lahontan cutthroat trout m−1 and width:depth ratios for small streams sampled 1993 to 1999 (n = 71) [10]; 
exponentiated estimates for 0.90, 0.50, and 0.10 regression quantiles and least squares (WLS) estimate for the weighted 
model w(lny) = w(β0 + β1X1 + (γ0 + γ1X1)ε), w = (1.310 − 0.0017X1)

−1. Tabled values are estimates, 90% confidence 
intervals from inverting the permutation test, and estimated probabilities for H0 : β1 = 0 based on the double permutation 
procedure for statistic T made with m + 1 = 100000 permutations 

(frequently β2 = 0). The unconstrained, full parame­
ter model is y = X1β1 + X2β2 + ε. To test hypothe­
ses on weighted estimates in the linear location-scale 
model y = X1β1 + X2β2 + �ε, the terms y, X1, and  
X2 are replaced with their weighted counterparts 
Wy, WX1, and  WX2, respectively, where W is the 
weights matrix, and the test statistic is constructed 
similarly. For homogeneous error models, W = I, 
where I is the n × n identity matrix. 

When testing hypotheses on a single parameter, for 
example, H0 : βj = ξj , the more general T statistic 
may be replaced with an equivalent t -ratio form t = √ 
(β̂j − ξj )/ Sfull, where  β̂j is the full model estimate 
of βj [1, 2, 18]. Use of test statistics that are not 
pivotal such as the actual parameter estimates is not 
recommended because they fail to maintain valid 
Type I error rates when there is multicollinearity (see 

Collinearity) among the predictor variables in X [1, 
2, 13]. 

Permutation Distribution of the Test 
Statistic 

The test statistic for the observed data Tobs = 
(Sreduced ÷ Sfull) − 1 is compared to a reference dis­
tribution of T formed by permutation arguments. 
The relevant exchangeable quantities under the null 
hypothesis to form a reference distribution are the 
errors ε from the null, reduced parameter model [1, 3, 
17]. These can be permuted (shuffled) across the rows 
of X with equal probability. In general, the errors 
are unknown and unobservable. But, in the case of 
simultaneously testing all parameters other than the 
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intercept for the location model when W = I, X1 is 
an n × 1 matrix of 1’s, the residuals from the null, 
reduced parameter model ered = y − X1 β̂1 or y dif­
fer from the errors ε by unknown constants that are 
invariant under permutation. Thus, in this case, a ref­
erence distribution for T can be constructed by either 
permuting ered or y against the full model matrix 
X to yield probabilities under the null hypothesis 
(proportion of T ≥ Tobs) that are exact, regardless 
of the unknown distribution of the errors [2, 5, 18]. 
The variables being tested in X2 may be continu­
ous, indicators (1, 0, −1) for categorical groups, or 
both. Thus, exact probabilities for the null hypothe­
sis are possible for the 1-way classification (ANOVA) 
(see Analysis of Variance) model for two or more 
treatment groups, for the single-slope parameter in a 
simple regression, and for all slope parameters simul­
taneously in a multiple regression. In practice, for 
reasonable n, a very large random sample of size m 
is taken from the n! possible permutations so that 
probability under the null hypothesis is estimated 
by (the number of T ≥ Tobs + 1)/(m + 1). The error 
of estimating the P value by Monte Carlo resam­
pling (see Monte Carlo Simulation) can be made 
arbitrarily small by using a large m, for example, 
m + 1 ≥ 10000. 

For null hypotheses on subsets of parameters from 
a linear model with multiple predictors, the reference 
distribution of T is approximated by permuting ered 

against X [1, 2, 5, 7, 11, 21]. Permuting against 
the full model matrix X ensures that the correlation 
structure of the predictor variables is fixed, that is, 
the design is ancillary. As the residuals no longer 
differ from the errors ε by a constant, they are not 
exchangeable with equal probability and the resulting 
probability for the null hypothesis is no longer exact 
[1, 5, 9, 12]. Regardless, this permutation approach 
originally due to Freedman and Lane [11] was found 
to have perfect correlation asymptotically with the 
exact test for least squares regression (as if the 
errors ε were known) [3] and has performed well 
in simulations for least squares [2], least absolute 
deviation [7], and quantile regression [5]. Some 
authors have permuted efull = y − Xβ̂ rather than ered 

[1, 18, 21], but there is less theoretical justification 
for doing so, although it may yield similar results 
asymptotically for least squares regression estimates 
[2, 3]. There are alternative restricted permutation 
schemes that provide valid probabilities for linear 
models when the null hypothesis and hence X2 only 
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include indicator variables for categorical treatment 
groups [1, 4, 19, 20]. Permutation tests for random 
(see Completely Randomized Design) and mixed 
effects in multifactorial linear models (see Linear 
Multilevel Models) are discussed in [4]. 

There are several approaches to improving exchan­
geability of the residuals ered under the null hypoth­
esis to provide more valid Type I error rates. For the 
linear least squares regression estimator, linear trans­
formations toward approximate exchangeability of 
the residuals from a model with p − q parameters 
must reduce the dimension of ered to n − (p − q) 
or n − (p − q) + 1 and reduce X (or WX) to con­
form, for example, by Gram-Schmidt orthogonaliza­
tion [9]. This theory is not directly applicable to a 
nonlinear estimator like that used for quantile regres­
sion. But reducing the dimension of ered by deleting 
(p − q) − 1 of the zero residuals and randomly delet­
ing (p − q) − 1 rows of  X to conform was found to 
improve Type I error rates for null hypotheses involv­
ing subsets of parameters for both linear location and 
location-scale quantile regression models with mul­
tiple independent variables [8]. This approach was 
motivated by [9] and the fact that quantile regression 
estimates for p − q parameters must have at least 
p − q zero residuals. An example of the Type I error 
rates for corrected and uncorrected residuals ered for a 
0.90 quantile regression model is shown in Figure 2. 
Another option for quantile regression is to use a τ ­
rank score procedure on ered, which transforms the + 
residuals to τ , – residuals to τ − 1, and zero resid­
uals to values in the interval (τ − 1, τ  ), which are 
then used to compute a test statistic similar to the 
one above but based on a least squares (or weighted 
least squares) regression of the rank scores r on X [5]. 
This τ -rank score test can be evaluated by permuting 
r across the rows of X to yield a reference distribution 
to compute a probability under the null hypothesis. 
An example of the Type I error rates associated with 
this procedure also is shown in Figure 2. 

An additional complication with permutation test­
ing for the linear models occurs whenever the null 
model specified by the hypothesis does not include 
an intercept term so that the estimates are con­
strained through the origin. This includes testing a 
null hypothesis that includes the intercept term or 
when testing subsets of weighted parameter estimates 
for variables that are part of the weights function. 
Residuals from the estimates for the null, reduced 
parameter model ered are no longer guaranteed to be 
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Figure 2 Cumulative distributions of 1000 estimated Type 
I errors for permutation tests of H0 : β3 = β5 = 0 based on 
uncorrected permutation of raw residuals (solid line), dele­
tion of (p − q) − 1 = 3 zero residuals (dashed line) prior to 
permutation, and by permuting τ -quantile rank scores (thick 
dotted line) for the 0.90 weighted quantile regression model 
wy = w(β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X3X4 + 
(1 + 0.05X1)ε); X1 = Uniform(0, 100), X2 = 4000 − 
20X1 + N(0, 300), X3 = 10 + 0.4X1 + N(0, 16), X4 is 0,1 
indicator variable with half of n randomly assigned each, 
β0 = 36, β1 = 0.10, β2 = −0.005, β4 = 2.0, β3 = β5 = 0, 
ε is lognormal (F−1(0.9) = 0, σ = 0.75), w = (1 +ε 
0.05X1)

−1, and  n = 90. Each P value was estimated with 
m + 1 = 10000 permutations. Fine dotted 1 : 1 line is the 
expected cdf 

centered on their appropriate distributional parameter, 
for example, Fe(x̄|X1) �= 0, although Fε (µ|X1) = 0. 
Instead, the estimated distributional parameter asso­
ciated with 0 for ered has random binomial sam­
pling variation that needs to be incorporated into the 
permutation scheme to provide valid Type I error 
rates. A double permutation scheme has been pro­
posed for providing valid Type I errors for these 
hypotheses [5, 8, 16]. The first step uses a random 
binomial variable, τ ∗ ∼ binomial(τ, n), to determine 
the value on which the residuals ered are centered, 

∗ ∗ered = ered − F−1(τ |X1), and the second step per-e 
mutes the randomly centered residuals ered 

∗ to the 
matrix X. For least squares regression, τ is taken as 
0.5. An example of Type I error rates for the dou­
ble permutation compared to the uncorrected standard 
permutation test for the hypothesis H0 : β0 = 0 for  a  
0.5 quantile regression model is shown in Figure 3. 
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Figure 3 Cumulative distributions of 1000 estimated 
Type I errors for permutation tests of H0 : β0 = 0 based 
on uncorrected permutation of raw residuals (solid line) 
and double permutation of residuals (dashed line) for 
the 0.50 quantile regression model y = β0 + β1X1 + ε; 
X1 = Uniform(0, 100), β0 = 0, β1 = 0.10, ε  is lognormal 
(F−1(0.5) = 0, σ = 0.75), and n = 150. Each P value was ε 
estimated with m + 1 = 10000 permutations. Fine dotted 
1 : 1 line is the expected cdf 

Example Application 

In applications, we often make use of the fact that 
confidence intervals on parameters in a linear model 
may be constructed by inversion of permutation tests 
[5, 7, 18]. We obtain a (1 − α) × 100% confidence 
interval on a single parameter for a variable x2 = X2 

by making the transformation y − x2ξ on a sequence 
of values of ξ and collecting those values that have 
P ≥ α for a test of the null hypothesis H0 : β2 = ξ . 

The data in Figure 1 were from a study designed 
to evaluate changes in Lahontan cutthroat trout 
(Oncorhyncus clarki henshawi ) densities as a func­
tion of stream channel morphology as it varies over 
the semidesert Lahontan basin of northern Nevada, 
USA [10]. The quantile regression analyses published 
in [10] used inferential procedures based on asymp­
totic distributional evaluations of the τ -quantile rank 
score statistic. Here, for a selected subset of quan­
tiles, the 90% confidence intervals and hypothesis of 
zero slope were made with permutation tests based on 
the T statistic and permuting residuals ered. Because 
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the null model for the weighted estimates was implic­
itly forced through the origin, the double permutation 
scheme was required to provide valid Type I error 
rates. It is obvious in this location-scale model that 
restricting estimation and inferences to central distri­
butional parameters, whether the mean or median, 
would have failed to detect changes in the trout 
densities at lower and higher portions of the distribu­
tion. Note that the permutation-based 90% confidence 
intervals for the weighted least squares estimate do 
not differ appreciably from the usual F distribution 
evaluation of the statistic nor do the intervals for the 
quantile estimates differ much from those based on 
the quantile rank score inversion [6]. 

Software 

Computer routines for performing permutation tests 
on linear, least squares regression models are avail­
able in the Blossom software available from the U. 
S. Geological Survey (www.fort.usgs.gov/pro-
ducts/software/sofware.asp), in RT available 
from Western EcoSystems Technology, Inc.(www. 
west-inc.com/), in NPMANOVA from the web 
page of M. J. Anderson (www.stat.auckland.ac. 
nz/∼mja/), and from the web page of P. Legendre 
(www.fas.umontreal.ca/BIOL/legendre/). 
The Blossom software package also features permuta­
tion tests for median and quantile regression. General 
permutation routines that can be customized for test­
ing linear models are available in S-Plus and R. 
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